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ABSTRACT. This paper discusses the results of an undergraduate summer research project
done at the University of Puget Sound during 2002 focusing on the curve shortening flow
for space curves and its connections with the knot theory of the curve’s associated Frenet
ribbon. Several conjectures and further lines of research are suggested. Evolution equa-
tions for writhe are also derived. The reader is assumed to have basic knowledge of

vector calculus.

1. INTRODUCTION

The curve shortening flow has previously been investigated by Gage [11], Hamilton [12],
Grayson [14], Altschuler [4], and others, but until recently has focused on planar curves
and surfaces. Recent work by Altschuler has began to investigate the problem of curve
shortening for space curves focusing on the types of singularities that may develop[3]. The
current, paper uses these results to investigate the relationship between the curve shortening
flow (CSF) and knot theory with particular emphasis on the curve’s writhe (Wr) and the
link (Lk) and twist (Tw) of the curve’s Frenet ribbon.

The project was done in several stages, which are presented in roughly chronological
order in this paper. First, the necessary background in differential geometry of curves had
to be acquired (§2), then the background in knot theory (§3), and then the curve shortening
evolution (§4) which contains new results. Section 5 contains numerical examples, while
most conjectures and suggestions for further research are in §6. Sections 2 and 4 are related
but do not directly build off of each other and both are distinctly separate from §3. Sections
2 and 3 provide most of the notation for the paper. Also there were a number of things
studied and interesting things learned that have been omitted for the sake of clarity, focus
and brevity.

I would like to thank Prof. Martin Jackson for introducing me to differential geometry and
the curve shortening problem and especially for supervising this research project. Thanks
are also due to Prof. Bryan Smith for his helpful conversations concerning knot theory, the
UPS Mathematics department for their support and interest, and the Adam S Goodman
scholarship and the University of Puget Sound for funding this project. Additionally all
Surface Evolver datafiles and Mathematica® notebooks are available from the author via

email request to jpreszler@member.ams.org.
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2. DIFFERENTIAL GEOMETRY OF CURVES

For the remainder of the paper let r : I; x Io — R™ be a family of parameterized curves,
each member having a fixed value of the evolution parameter. The parameter u shall be used
for an arbitrary spatial parameter, s for the arc length parameter, and ¢ for the evolution
parameter. We will further restrict ourselves to the cases n = 2 and n = 3 and if the

distinction between the two possibilities is important then the curve will be specified as a

ar
Ou

r(u,-) or simply r(u) will be used where ever the evolution parameter ¢ is of no importance.

plane or space curve, respectively. Also let r' = unless otherwise noted. The notation

Throughout this paper we will require the existence of the Frenet frame defined by

5 T 0 kE 0 T
(1) s N|l=|-k 0 7]|-|N
B 0 —7 0 B

Here k is the curvature, 7 is the torsion (both are functions of arc length), and T', N, and
B are the unit tangent, normal, and binormal vectors respectively. Also the unit binormal
is defined as B = T x N. The Frenet frame requires that we have a regular curve, i.e.
r'(u) # 0V u € I1, and that the k(s) Z0V s € I;.

There are more useful computational formulas for the curvature and torsion that depend
only on the initial curve r(u,-). These formulas are:

@) k) = P, an
(' () x /(W) -+ (1)
|7 (u) x r'"(u)|?

3) 7(u) =

If r(u) is a planar curve then the torsion is always zero and it is possible to put a sign
on the curvature; see [7] for more on this subject since our primary focus is space curves.

The existence of the Frenet frame allows us to discuss the so-called Fundamental Theorem
of the Local Theory of Curves.[7]

Theorem 1 (Fundamental Theorem of the Local Theory of Curves). Given differentiable
functions k(s) > 0 and 7(s) for s € I, there exists a regular parameterized curve r :
I — R® such that s is the arc-length, k(s) is the curvature, and 7(s) is the torsion of r(s).
Furthermore, any other curve, 7(s), with the same arc-length, curvature, and torsion, differs
from r(s) by an orientation-preserving rigid motion. If the arc-length and curvature are the
same but the torsion of 7(s) is the negative torsion of r(s) then the two curves differ by an
orientation-reversing rigid motion.

Thus, to uniquely determine a curve in three-space we only need an initial point on
the curve and the curvature and torsion functions. This is a powerful result and clearly
demonstrates the importance of the curvature and torsion. Thus, the behavior of these two

functions will be of the utmost importance when studying the curve shortening flow. A proof
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of the uniqueness part of this theorem requires little more than the Frenet equations (1),
but the existence uses ideas from ODE’s. Proofs of both can be found in [7] and elsewhere.

While the fundamental theorem tells us that all we need is curvature and torsion, the
local canonical form helps us construct the curve. Also, the local canonical form provides a
natural representation of a curve with respect to the coordinate system of the Frenet frame.
This form is determined by using the finite Taylor expansion

2 3
r(s) = r(so) + s x7'(s0) + % x1'"(s0) + % xr'"(s0) + R,

where R is the remainder term satisfying lim,_, S% = 0. Using (1) and the coordinate
system (z,y,2) = (T'(s),N(s),B(s)) with r(sg) being the origin, we can define r(s) =
(z(s),y(s), 2(s)) by

2.3
4) x(s):s—kﬁs + R,
ks> k's®
(5) y(s) = oY + 5 + Ry,
3
© ()= T 4 .,

where k' is differentiation with respect to arc-length. We can now start at any point on the
curve and proceed to construct the entire curve knowing only how much the curve bends
(curvature) and twists (torsion) from point to point.

So far we have concerned ourselves with the local theory of curves and have yet to look
at more global structure. The global properties of curves will be of more importance when
examining the CSF than the local properties. However, very little global theory can be
developed without a specific family of curves so only one of the simpler, yet useful, facts
from the general global theory of curves will be discussed immediately.

The isoperimetric problem is one of the oldest in differential geometry, being known
and solved (in the planar case) by the ancient Greeks. The problem asks: “Of all simple
closed curves in the plane with given length L, which one bounds the largest area?” [7]
Here a simple curve is one that doesn’t intersect itself except at its endpoints (since it’s
closed). This problem is commonly seen in high school geometry classes, with the circle of
circumference L being the solution. However, this problem wasn’t rigorously proved because
a solution was assumed to exist. In 1870 Weierstrafl pointed out that similar problems fail
to have a solution and gave the first rigorous proof of the isoperimetric inequality. His proof
was very difficult and has since been simplified, but not enough for inclusion here. We shall

state the isoperimetric inequality and refer the interested reader to [7] for the proof.

IWe will note that the torsion, measuring the twisting of the curve, is indeed related to the topological
twist (Tw) of a ribbon. This relationship will be made explicit in §3.
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Theorem 2 (Isoperimetric Inequality). Let X be a simple closed curve in the plane with

length L and bounding a region of area A. Then
(7) L? —47A >0,

and equality holds iff X is a circle.

In addition to the plane, finding isoperimetric inequalities for curves on other surfaces
has been an interesting problem in differential geometry. The interested reader is referred
to [20] for the case of a sphere. There are also results concerning isovolumetric inequalities
and similar properties for higher dimensions. One interesting feature of the isoperimetric
inequality is that it provides an easy way of determining the existence of a curve with certain
hypothetical quantities. For example we know that a curve with length of 6 units, bounding
an area of 3 square units, can’t exist.

The isoperimetric inequality has also demonstrated its utility in the investigation of the
CSF. Gage [11] proved that a simple, closed, convex, planar curve will become a circle under
the CSF. His proof consists of showing that the length and area evolve in such a way that
the isoperimetric inequality holds throughout the deformation and that equality holds in

the limit of the evolution process.

3. KNoT THEORY

Knot theory is one of the few areas of mathematics that involves the study of exactly
what the name implies to a layperson, in this case knots. However, these knots are formed
by creating a knot in a piece of string and then attaching the ends of the string together,
thus making it impossible to untie unless your original knot wasn’t really a knot (such a
knot is called the unknot). Much of the following can be found in [1], as well as a great deal
more; this is a highly recommended book for those interested in knot theory.

Knot theory originated in the 1880’s when Lord Kelvin came up with the idea that atoms
were simply knots in “ether.” The Scottish physicist Peter Tait, now known for being one
of the first knot theorists, began to tabulate different types of knots hoping that he could
delineate all possible elements. C.N. Little, an American mathematician of the same period,
also began producing tables of knots. As we all know Kelvin’s ideas concerning knots in ether
were wrong, but the mathematicians had found an interesting new subject and continued
their study despite the immediate lack of application.

However, in the 1980’s biologists and chemists discovered that certain molecules like DNA
knotted themselves up. How this coiling occurred became an important question, to which
topology and knot theory quickly became of use. Also chemists began to produce knotted
molecules synthetically, where the type of knot determined the molecular properties. Much
of the knot theory of importance to this paper is related to the super-coiling of DNA.

Since a true knot can never be untied (in knot theory at least) it is an interesting problem

to figure how to tell if two knots are indeed the same, thus enabling one to tell if a knot
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FIGURE 1. Reidemeister moves of type I, II, and III. Image taken from [1]

is the unknot. Since knots can be deformed physically without changing any of their true
structure this problem is quite difficult and there are many unanswered questions relating to
knot isomorphism, but many important quantities have been developed to help categorize
knots. The quantities of link, twist, and writhe will be explained after the discussion of
Reidemeister moves and the construction of the Frenet ribbon.

A curve alone can be knotted, and some knot quantities make sense for single closed curves
such as writhe which depends only on the knot’s axis curve. However most quantities, such
as link and twist, require a tube or ribbon. A Frenet ribbon can be constructed from the
base curve by moving some € > 0 distance out along the Frenet normal vector. If r(u) is
the base curve then the other edge of the Frenet ribbon is given by r(u) + € * N(u) and the
ribbon itself is a flat surface stretched between the two curves. These two curves will be
denoted as r(u) for the base curve and 7(u) for the Frenet ribbon curve.

Let us now look at one method of determining if two knots are isomorphic, namely
Reidemeister moves. In 1926 Kurt Reidemeister, a German mathematician, proved that
two knots are the same if you could use a sequence of “Reidemeister moves” to get from
one to the other. There are three types of Reidemeister moves and all of them change the
crossings that the knot makes with itself, but they change these crossings in a “trivial” way
by not allowing part of the knot to be passed through itself and thus preserve the structure.
Type I moves allow us to add or remove a loop in the knot. Type II moves allow us to add
or remove two crossings of different sign and type III moves enable us to move a strand of

the knot from one side of a crossing to the other. These moves are depicted in figure 1.
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FIGURE 2. Signed crossing convention. Image from [1]

The linking number of a Frenet ribbon is one half the sum of its signed crossings, but
can also be defined analytically as
L1 (Tr(v) x T (s)) - (r(v) — 7(s))
Lk = — dvd
(8) (7',7") 47T // |T('I}) _ F(S)|3 U 87

where both s and v are arc-length parameters and 7 = r+¢eN. Clearly the method of adding

the signed crossings is much easier because we only have to look at one projection of the
knot (Reidemeister moves can get us to any other projection, but they don’t change Lk).
Crossings are given a sign of +1 according to figure 2.

The linking number has several interesting properties. One is that it’s invariant under
Reidemeister moves, which is a consequence of being a topological invariant. Also Lk € Z
and Lk changes by +1 if the ribbon is passed through itself. Additionally, Lk is the only
knot theoretic quantity considered here that is easy to see exactly from simply looking at
the knot; both twist and writhe require a high degree of computation.

The twist of a Frenet ribbon measures the rate at which the ribbon curve winds around
the base curve, or more specifically how the normal vector winds around the tangent vector
in the Frenet frame. Thus the total twist (Tw) is related to the total torsion of the base
curve by
(9) Tu(r(s).N(s) = 5 [ s
An important thing to note is that the above formula is specific to the Frenet ribbon. The
twist is an additive quantity, thus the twist of two composed knots is the twist of the first
plus the twist of the second.

Writhe is the most abstract quantity that will be dealt with, and has several interpreta-
tions. The two with the most intuitive importance are that it is the difference between the
link and twist (see White’s formula below), but writhe also has an interesting area interpre-
tation. This interpretation was first mentioned by Fuller [10] in 1978 and latter justified by

Cantarella [6]. This area interpretation says that the writhe of a simple closed curve will
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satisfy
(10) 1+ Wr= 4 mod 2,

27

where A is the area on the unit sphere enclosed by the tangent indicatrix of the curve. The
tangent indicatrix is a curve on the unit sphere formed from the endpoints of the original
curve’s unit tangent vectors based at the origin of the sphere. From this formula we can
see that the writhe of a planar curve must be a multiple of 2, thus demonstrating the
short-coming in this interpretation. Ideally, we would know the exact multiple of two, such
knowledge requires the use of a different interpretation. Since a planar curve is unlinked
with it’s ribbon and the torsion is everywhere zero, by White’s formula (12) the writhe
should be zero. This can be seen from the analytical definition of writhe:

) W) = & [ [EOTO) 0 =),

—r(s)P?

where both s and v are arc-length parameters. 2

From the analytic definition we can see that a planar curve indeed has zero writhe because
the cross product of the tangents produces a vector normal to the plane of the curve. Since
this vector is orthogonal to r(v) — r(s) (which is in the plane of the curve) the numerator
of the integrand is always zero.

Another interpretation of writhe comes from the clear similarity between equations (11)
and (8). The writhe is also referred to as the “self-linking number” for this reason. However
the writhe is not a topological invariant so we can obtain it by counting the signed crossings,
but we must do so over every possible projection which make the integral calculation more
appealing. Neither writhe nor twist must be integers, but their sum must be as a consequence
of White’s formula below.

Link, twist, and writhe are related by

(12) Lk =Tw+ Wr.

This is commonly called White’s formula and explains why the link and twist are useful
quantities to consider when studying the writhe.

Since Reidemeister moves change the relationship of crossings (or the number of crossings)
some Reidemeister moves can affect knot quantities such as the link, twist, and writhe. It
can easily be seen that the linking number, or link, is unchanged under Reidemeister move.

Note that a Reidemeister move of type I will change the total twist in a knot. However
the linking number must remain constant so by White’s formula the writhe must also change

under a type I move. This is clear evidence that neither twist nor writhe are topological

2The literature is somewhat vague concerning this formula. Some articles make it seem that any spatial
parameterization can be used, while others hint at only an arc-length parameterization. From the numerous
numerical examples worked out during my research the curve must be parameterized by arc-length and the
integration must be done with respect to arc-length.
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invariants, but they are both invariant under type II and IIT moves. In fact the twist and
writhe are invariant under dialations and contractions of space and orientation-preserving
rigid motions. Only the sign of link, twist, and writhe are changed under orientation-
reversing rigid motions.

Lastly it is mentioned in [2] and elsewhere that writhe jumps by £13 if the curve is
deformed through itself and the twist changes continuously even if the ribbon is deformed
through itself. However, no explanations of this result are given and some of the numerical
evidence obtained during this research project seem to conflict with the claims in [2]. This
will be explained fully in §5 and 6.

4. CURVE SHORTENING EVOLUTION

Let r(u,t) be a simple, closed curve. The curve shortening flow moves every point on r
in the direction of its Frenet normal vector at a rate equal to the curvature at that point.
This can be described by
or
— =kN.
ot

It is useful to have a relationship between differentiation with respect to arc-length and with

(13)

respect to a general space parameter, this is given throughout the literature as

o 190

(14) —=-—,
ds qOu

where ¢ = |4Z|. Also we can commute & and 2 according to
00 090 0
=tk
9tds  0s0t " 0s

It is interesting to note that these relationships hold for both planar and space curves.

(15)

Before proceeding with the evolution equations for spatial quantities we will mention
some of the important results concerning curves in the plane. In general, under the CSF
a simple, closed, convex, planar curve becomes circlular as ¢ - w where w is the time
where equality holds in the isoperimetric inequality. If the curves are initially embedded
they remain so under the evolution and the only singularities one must be concerned with
are self-intersections of the curve. The work of many mathematicians went into developing
these, and other, results and is still an ongoing effort. Those interested in the planar case are
referred to [11], [12], [14], and [8]. Steven Altschuler together with his advisor Matt Grayson
have recently began to explore the CSF for space curves, [3] [4]. Their work originated with
trying to resolve planar singularities through the use of “ramps” in three-space (see [4]), but
the basic results hold for arbitrary space curves.

Let us now look at how particular quantities of the curve evolve under the CSF, in
particular the tangent vector, curvature, and torsion. The tangent vector evolves according

3In [2] £2 is used, but this is because of a different method of adding the signed crossings.
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to
or 0T )

1 — = — 4+ K’T.
(16) ot~ o
This form is found in [4], but can also be expressed as,

oTr 0ok

1 — = —N B
(a7 ot = s TFTE

which is more closely related to the planar evolution of the tangent. *
The evolution equations for curvature and torsion are given in [4], and repeated here for

reference, as

ok 9k s o
(18) a—@'{'k(k —T)
and
or Ot 20kdr 21 (0% 1 [0k\®
(19) a—@Waa*?(@‘z(a) +’“>-

From the evolution equations for the curvature and torsion one can see that even if the
curvature is bounded, the torsion can “blow-up,” because the curvature can be arbitrarily
close to 0 and thus % becomes arbitrarily large.

One with a background in PDE’s will notice that so far all quantities seem to evolve
according to heat equations, or parabolic PDE’s. This demonstrates one main aspect of the
CSF, it minimizes the curves “energy,” seeking to smooth out the curve. Heat equations have
the characteristic of propagating information at infinite speeds. Since the above equations
have lower order terms we don’t see things evolving at infinite speed but these quantities
do smooth out fairly quickly. There are some quantities, most notably writhe and length
that don’t evolve according to heat equations, so one doesn’t see the length minimizing at
infinite speeds, but instead shows an almost linear decrease in most examples.

The length of a curve, L, evolves by

oL [,
(20) = / k2ds.

Later we will see that this is closely related to the evolution of the writhe.
A result from differential geometry is that a helix has a constant ratio between the torsion

and the curvature, or

T constant
- = n .
k

Thus it is natural to ask if a helix will remain a helix during the CSEF? The following theorem
shows that this ratio doesn’t necessarily remain constant.

“4In [12] the evolution for the tangent vector of a planar curve is
aT ok
ot s

Equation (17) is equivalent to this since the torsion of a plane curve is zero.
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Theorem 3. Let k(s) #0V s € I; be the curvature and 7(s) be the torsion of a simple
space curve r(s,t) where s is arc-length and t is the deformation parameter. Then T evolves

according to

0 (T 0% /r 40k 0 (1 21 0%k T3
21 — (== ()t (- )+ s+ Th+ —.
(21) 5t (1) =92 (0) * e () waw T F T
Proof. This evolution equation follows immediately from the quotient rule with substitutions
using equations (18), (19), and the quotient rule for 2= (I). O

Now we will derive the evolution equation for writhe, beginning from a known result.

From [2] we have the following theorem.

Theorem 4. Let X be a simple closed space curve with deformation parameter A € [0,1],
and tangent vectors given by T(s,\) where s is the arc-length parameter. If T(s,0) #
—T(s,A\) V XA €[0,1] then

(22) %WT(X,\) - —% / (%T(s,/\) « T(s,/\)) - %T(s,/\)ds.

Note that the condition T'(s,0) # T'(s, ) is equivalent to saying that there are no dis-
continuities in the normal vector field during evolution.
By translating the above theorem into our notation and simplifying by (1) we obtain the

following equivalent theorem, which is our main result.

Main Theorem. [Evolution of Writhe] Let r(s,t) : Iy x I, — R3 be a simple, closed space
curve with arc-length parameterization s and evolution parameter t. Let k be the curvature
function and T the torsion function of r. If T'(s,0) # —T'(s,A) V X € [0,1] then

0

1 [
(23) aWr(r) = 27r/k Tds.

Proof. By changing notation in (22) we obtain

(24) 2Wr(r) = —%

ot (%T(Sat) X T(s,t)) : %T(s,t)ds.

By (1), the evolution of the tangent (16), and the properties of the cross and dot products
of vectors in the Frenet frame we obtain

0 1 ok 9
(25) aWr(r) = —%/ (—ak(B-N) + k*T(N - N)) ds.
Since B- N =0 and N - N =1, (25) reduces to (23). O

Since we now know the formula that dictates the change in writhe under the CSF, it is
natural to ask how the change in writhe evolves under the curve shortening flow, i.e. what
is g—;Wr?
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Theorem 5. [Evolution of %Wr] Let r(s,t) : I, x Iy — R3 be a simple, closed space curve
with arc-length parameterization s and evolution parameter t. If k is the curvature function
and T the torsion function of r, then

0? 1 0%k Ok

Proof. By (14) and (23) we must compute

82

(27) o

1 0
Wr(r) = —g/a(k%'q)du.

From the product rule, simplification, and integration by parts (27) becomes

s 1 &2 &’k
(28) ﬁW?‘(T) = "o (@(k%’) + GkT@ + 2k 1 (K* — 'rz)) ds.

By the additivity of the integral we can remove the first term, which is zero because of

the periodicity of k27, and a factor of 2 can be removed from the remainder which yields

2 2
(29) %WT(T) = —% / (3k7% + k(K — 72)) ds.

While this may be the most useful form (since it is entirely in terms of curvature, tor-
sion, and partials with respect to arc-length) we note that a further substitution from (18)
produces (26). O

5. NUMERICAL EVIDENCE

Space curves with desired properties that are easy to work with are notoriously difficult
objects to find in general and examples of simple, closed non-trivial space curves are certainly
no exception. Fortunately from [22] we have an interesting family of simple, closed space
curves given by S, : [0,2n7] — R® defined as

w0 = (1) o (2), (1 D) (2), )

In [22] it is shown that f approaches a non-zero constant as n — oo; however we will only

concern ourselves with small values of n.
In addition to the above family of space curves, several knot parameterizations were also
used extensively, such as

(31) g(u) = (3sin(2u) — sin(u), sin(3u), 3 cos(2u) + cos(u)),
and a serendipitously derived variant that has some interesting behavior

(32) h(u) = (—3sin(2u) — sin(u), — sin(3u), 3 cos(2u) + cos(u)) .
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FIGURE 3. Evolution of the writhe, twist, and link of (30) when n = 4.

While these are all nice curves, they don’t evolve by themselves. To evolve the curves
Ken Brakke’s Sur face Evolver software was used and can be freely downloaded from his
web-site (http://www.susqu.edu/facstaff/b/brakke/evolver/). This program reads datafiles
containing the definition of the curve and some initial data and commands. The curve
can then be refined (producing a better approximation) and evolved according to the CSF
(or other types of flows). Technically Surface Evolver seeks to minimize the user specified
energy of the structure, which in our case is the arc-length of the curve.

Many useful quantities are built into Evolver and quantities not built in can be pro-
grammed into Evolver by the user. This allows us to capture data on curvature, torsion,
writhe, twist, and the length of the curve during the evolution process. The captured data
can then be plotted using Mathematica®.

Figures 3 - 4 are graphs of the evolution of the knot theoretic quantities for Sy4(u,t) (eq.
30) and h(u,t) (eq. 32), where the y-axis is the value of the quantity and the z-axis is
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FIGURE 4. Evolution of the writhe, twist, and link of (32).

the number of iterations of the evolution process (1 iteration corresponds to roughly .001
seconds).

These two curves behave very differently under the evolution process. For Si(u,t) (eq.
30) the curve and its ribbon never intersect with themselves during the evolution process.
The only interesting points are inflection points, where £ = 0, which are the locations of
crossings between the edges of the ribbon. These crossings appear in a flat projection of the
ribbon and are used to computer the linking number.

For h(u,t) (eq. 32) the curve and the ribbon have a self-intersection after approximately
220 iterations. Evolver handles this very nicely and leads one to question whether this is

the only “nice” way of handling a self-intersection.
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6. CONCLUSIONS

However, both of the above curves suggest several common events. One, mentioned in
§3, is the apparent contradiction between these numerical examples and the claims in [2]
that twist changes continuously during deformation and writhe will experience a jump if
the ribbon is passed through itself. Resolving this is of the utmost importance before the
current lines of research can be continued. The discontinuity in the evolution of the twist
leads to the first of several conjectures.

Conjecture 1 (Frenet Unlinking). If the Frenet ribbon of a closed space curve is initially
linked (i.e. Lk # 0) then the curve shortening flow will unlink (Lk = 0) the ribbon in finite
time.

Additionally all numerical evidence to date points to the following conjectures concerning
the behavior of the writhe under the CSF. For the following let Wry denote the initial writhe

of a curve and let Wr; denote the writhe of the curve at time ¢t > 0 of the evolution process.

Conjecture 2 (Writhe behavior). If the writhe of a closed space curve is defined during
the curve shortening evolution on the interval [0,w) for some real number w > 0, then

(33) [Wry| < |Wro| ¥V te€[0,w).
Furthermore, if Wrg > 0 then Wry; > 0 and if Wrg <0 then Wr; <0V t € [0,w).

From the previous conjecture it should be easy to establish the stronger result below.

Conjecture 3 (Monotonicity of Writhe). If Wry > 0 and the CSF is defined on the interval
[0,w) then Wry < Wrp, where 0 < p < ¢t < w. Similarly, if Wry < 0 then Wr; > wr, where
0<p<it<w.

Since a planar curve must have Wrg = 0, if the curve is embedded then Wr; = 0 V ¢.
However, Wr; = 0 does not imply that the curve is planar at time ¢ since a spherical curve
also has Wr = 0. This hints at a possible classification problem for curves based on their
writhe, which would be a purely topological problem.

Conjecture 4 (Classification of Curves by Writhe). If the writhe of a simple closed curve
is integral, |Wr| = n € N, then n is the minimum genus of the surface that the curve can
be embedded in. If Wr = 0 then the curve is either planar or spherical.

A good initial step towards the resolution of the classification conjecture would be to
derive a new formula for the writhe exclusively in terms of the curvature and torsion of the
curve.

Lastly we would like to know the following:

Conjecture 5. If

then
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for n > 0.

This is intimately related to the previous conjectures concerning the behavior of the

writhe during the evolution process which is part of the overall question:

Conjecture 6. If a closed space curve where Wry = 0 for some ¢ € [0,w) then Wr, =0

Vit<p<uw.
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